MobiEye: An efficient cloud-based video detection system for real-time mobile applications

TitleMobiEye: An efficient cloud-based video detection system for real-time mobile applications
Publication TypeConference Paper
Year of Publication2019
AuthorsJ Mao, Q Yang, A Li, H Li, and Y Chen
Conference NameProceedings Design Automation Conference
Date Published06/2019
Abstract

In recent years, machine learning research has largely shifted focus from the cloud to the edge. While the resulting algorithm- and hardware-level optimizations have enabled local execution for the majority of deep neural networks (DNNs) on edge devices, the sheer magnitude of DNNs associated with real-time video detection workloads has forced them to remain relegated to remote execution in the cloud. This problematic when combined with the strict latency requirements that are coupled with these workloads, and imposes a unique set of challenges not directly addressed in prior works. In this work, we design MobiEye, a cloud-based video detection system optimized for deployment in real-time mobile applications. MobiEye is able to achieve up to a 32% reduction in latency when compared to a conventional implementation of video detection system with only a marginal reduction in accuracy.

DOI10.1145/3316781.3317865