Learning structured sparsity in deep neural networks

TitleLearning structured sparsity in deep neural networks
Publication TypeConference Paper
Year of Publication2016
AuthorsW Wen, C Wu, Y Wang, Y Chen, and H Li
Conference NameAdvances in Neural Information Processing Systems
Date Published01/2016
Abstract

High demand for computation resources severely hinders deployment of large-scale Deep Neural Networks (DNN) in resource constrained devices. In this work, we propose a Structured Sparsity Learning (SSL) method to regularize the structures (i.e., filters, channels, filter shapes, and layer depth) of DNNs. SSL can: (1) learn a compact structure from a bigger DNN to reduce computation cost; (2) obtain a hardware-friendly structured sparsity of DNN to efficiently accelerate the DNN's evaluation. Experimental results show that SSL achieves on average 5.1× and 3.1× speedups of convolutional layer computation of AlexNet against CPU and GPU, respectively, with off-the-shelf libraries. These speedups are about twice speedups of non-structured sparsity; (3) regularize the DNN structure to improve classification accuracy. The results show that for CIFAR-10, regularization on layer depth reduces a 20-layer Deep Residual Network (ResNet) to 18 layers while improves the accuracy from 91.25% to 92.60%, which is still higher than that of original ResNet with 32 layers. For AlexNet, SSL reduces the error by ∼ 1%.