Global exponential synchronization of memristor-based recurrent neural networks with time-varying delays.

TitleGlobal exponential synchronization of memristor-based recurrent neural networks with time-varying delays.
Publication TypeJournal Article
Year of Publication2013
AuthorsS Wen, G Bao, Z Zeng, Y Chen, and T Huang
JournalNeural Networks : the Official Journal of the International Neural Network Society
Volume48
Start Page195
Pagination195 - 203
Date Published12/2013
Abstract

This paper deals with the problem of global exponential synchronization of a class of memristor-based recurrent neural networks with time-varying delays based on the fuzzy theory and Lyapunov method. First, a memristor-based recurrent neural network is designed. Then, considering the state-dependent properties of the memristor, a new fuzzy model employing parallel distributed compensation (PDC) gives a new way to analyze the complicated memristor-based neural networks with only two subsystems. Comparisons between results in this paper and in the previous ones have been made. They show that the results in this paper improve and generalized the results derived in the previous literature. An example is also given to illustrate the effectiveness of the results.

DOI10.1016/j.neunet.2013.10.001
Short TitleNeural Networks : the Official Journal of the International Neural Network Society